
Journal of Sound and <ibration (1999) 228(5), 1182}1194
Article No. jsvi.1999.2468, available online at http://www.idealibrary.com on
TRADEOFFS IN DESIGN COMPLEXITY — TEMPORAL
VERSUS SPATIAL COMPENSATION

G. C. SMITH AND R. L. CLARK

Department of Mechanical Engineering and Materials Science, Duke ;niversity,
Durham, NC 27708-0302, ;.S.A.

(Received 11 June 1999)
1. INTRODUCTION

In adaptive structure design there are two general approaches to increase the
performance of a feedback active control system. One approach is to change the
type of temporal compensation or controller implemented. Commonly, a static
controller is replaced by a more complex dynamic controller, as they o!er the
ability to frequency-shape the control signals. However, as detailed by Vipperman
and Clark [1], dynamic controllers are more challenging to experimentally imple-
ment, due to the required programming and use of digital signal processor (DSP)
boards and additional "ltering hardware. The other approach to increase adaptive
structure performance is to optimize the spatial compensation of the active control
system. Many authors have accomplished this by developing techniques to
determine the optimum transducer placement on the structure [2}5], and the
results have demonstrated signi"cant performance increase.

It is the purpose of this letter to consider the design of controllers and optimum
spatial placement of transducers, both individually and concurrently, and to
compare the achievable performance increases. This investigation will give
practitioners an understanding of the tradeo!s in design complexity between
optimizing temporal compensation versus optimizing spatial compensation. As
with previous design work by the authors in reference [6], a level basis for
comparison of the closed-loop performance results is created by adjusting each
design such that the adaptive structures use the same level of control signal energy.
The design processes and other theoretical developments are discussed in section 2.
The physical test system is detailed in section 3. The results of the design cases
are presented and discussed in section 4. Conclusions of this work are given
in section 5.

2. THEORY

This letter represents a multi-disciplinary investigation in structural acoustic
modelling, performance metrics, optimal temporal compensation design and
optimal spatial compensation design. Theoretical developments new to this work
0022-460X/99/501182#13 $30.00/0 ( 1999 Academic Press
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are detailed below. However, due to space constraints, previous developments are
appropriately referenced.

2.1. STRUCTURAL ACOUSTIC MODEL

A structural model of a simply supported plate with attached distributed
transducers is built using the assumed modes approach, as outlined by Clark et al.
[7]. A diagram of the test plate and control system hardware is given in Figure 1.
A total of three sensoriactuator [1] transducers are attached to the plate for
structural acoustic control, with the localized mass and sti!ness e!ects of each
transducers incorporated into the plate model. Using the appropriate
sensoriactuator hardware, each transducer acts as a colocated sensor}actuator
pair. Implementation issues associated with the sensoriactuator are not considered
here, but are detailed by Vipperman and Clark [1]. Finally, further details on the
transducer and plate physical properties are given in section 3.

A new development in this work, is the assumption that each plate mode is
excited at the same input level, weighted by its modal mass. In standard state-space
notation [7], this is de"ned as

Bu"C
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p
]~1Du, (1)
Figure 1. Simply supported plate test structure with three small sensoriactuator transducers
(arbitrary or non-optimal position): (a) front view, (b) side view; , 0)0508]0)0508 m
piezoceramic patch; , Sensoriactuator hardware; Controller.
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where u is the N
m
]1 input disturbance vector, N

m
is the number of structural

modes included in the model, M
s
and M

p
are the N

m
]N

m
mass matrices associated

with the structure and transducers, respectively, and 0 is a N
m
]N

m
matrix of zeros.

It is assumed that each input is uncorrelated and has a unity power spectrum, i.e.,
S
uu

(u)"1. The generalized disturbance de"ned in equation (1) omits the spatial
"ltering e!ects of a speci"c disturbance transducer type or placement. Thus, it is felt
that the optimum designs and performance results are more applicable to a wide
variety of disturbance scenarios.

In this work, the adaptive structure is designed to reduce the total far-"eld sound
power radiated by the plate due to the input disturbance. Assuming that the plate
resides within an in"nite ba%e and radiates into an in"nite half-space (see side-view
in Figure 1), Rayleigh's integral can be used to characterize the sound pressure level
at a far-"eld point in terms of the velocity of the vibrating plate surface. Radiation
"lters are then developed which relate the modal surface velocity of the plate to the
total radiated sound power. For this work, the radiation "lters detailed by Clark
and Cox [8] are utilized. Further details on this portion of the model development
are found in reference [8].

2.2. PERFORMANCE METRICS

Design optimization usually involves the minimization of a cost functional which
relates to a desired performance goal. A block diagram of the cost functional system,
H(s), for this work is shown in Figure 2. The input to the system is generalized
disturbance, u. As detailed, H(s) is comprised of the plate model, controller,
radiation "lter, and appropriate weighting matrices. Inputs to the plate model are
the generalized disturbance and the sensoriactuator control signals, u

c
. Outputs of

the plate model are the plate modal velocity, v, and the sensoriactuator sensor
signals, y

s
. The output of the radiation "lter, a, is a measure of structural acoustic

radiation. The cost functional system has three outputs: one output is the weighted
sum, Z, of the structural acoustic radiation signal (performance) and the
sensoriactuator control signals (control e!ort); the other two outputs of H(s) are the
unweighted performance and control e!ort signals.

Three transfer matrices can be identi"ed through the cost functional system:
H

Z6
(s), H

!6
(s), and H

6
c
6
(s). Each transfer matrix forms an appropriate performance

metric for compensation design and analysis. The H
2

norm of H
Z6

(s) forms the
performance metric for both spatial and temporal compensation design
optimization. The physical interpretation being that the H

2
norm is the r.m.s. value

of the weighted output, Z, when the generalized disturbance inputs are driven
concurrently by independent, spectrally white noise (see equation (1) above) [9].

For optimum spatial compensation design, the placement of the three colocated
transducers is varied on the plate surface until the H

2
norm of H

Z6
(s) is minimized.

For optimum temporal compensation design, the H
2

norm of H
Z6

(s) is
minimized by the proper selection of G. Two controller forms are being considered:
a static G comprised of a constant 3]3 gain matrix and a dynamic G(s) which
includes a full system model.



Figure 2. Block diagram of cost functional system for compensator design nd analysis.
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The weighted output, Z, of the cost functional system provides for a metric which
is a balance of both performance and control e!ort. As detailed in Figure 2, the
performance weighting is simply an appropriately sized identity matrix. However,
the coe$cient R is adjusted for each design to ensure that all control systems use
the same level of control signal energy [6].

The two other transfer matrices through H(s) are used to analyze the optimum
temporal and spatial compensation designs. The H

2
norm of H

6
c
6

provides
a measure of the control signal energy per unit of disturbance. Whereas, the H

2
norm of H

!6
forms a metric that compares the structural acoustic control

performance of the di!erent design con"gurations. Called active insertion loss [10],
the reduction of noise transmission by the activation of the each control system is
characterized as AI¸,20 log

10
(¹

ol
/¹

cl
). The term ¹

ol
is the H

2
norm of the

open-loop performance transfer matrix (H
!6

where G(s)"0) over the bandwidth of
interest and ¹

cl
is the H

2
norm of the closed-loop performance transfer matrix over

the same bandwidth. Thus, positive values of AIL correspond to a reduction in
radiated sound power.

2.3. OPTIMUM TEMPORAL COMPENSATION DESIGN

Two controller types are being considered in this work: static, output feedback
and dynamic, H

2
control. Using iterative optimization schemes, each controller

type is designed to provide maximum reduction of the H
2

norm of H
Z6

. The static,
output feedback controller is designed using the dual Levine}Athans (DLA)
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algorithm [11] and the dynamic H
2

controller is designed using the state-space
solutions prescribed by Doyle et al. [12].

2.3.1. Static, Output Feedback Control

Frequency-independent, static, output-feedback controllers are often desirable
for adaptive structures due to their robustness with respect to parametric model
uncertainty and minimal hardware requirements (i.e., analog resistors and
ampli"ers). Many techniques have been proposed to determine the optimum
constant gain matrix and the dual Levine}Athans (DLA) algorithm is used here.
The DLA algorithm was "rst described by Levine and Athans [11] and later
applied to structural acoustic control by Clark and Cox [8]. The algorithm is
globally convergent (i.e., converges from any initial stabilizing feedback gain to
stationary point of the cost functional) and the solution satis"es the necessary
conditions for optimality.

2.3.2. H
2

Control

Similar to the static, output feedback control design process,H
2
control involves

the minimization of the H
2

norm of H
Z6

. The primary advantage of H
2

control is
that the controller's action can vary as a function of frequency. This o!ers increased
closed-loop performance and increased design #exibility. Further, H

2
control

designs also have a reduced sensitivity to signal uncertainty when compared to
other dynamic control techniques, e.g., LQG control. The H

2
control design

problem is solved using the state-space solutions presented in reference [12]. This
process involves solving two Riccatti equations by Schur decomposition and
realizes a full dynamic controller, G(s), with its own set of poles and zeros. The
optimal solution is unique and has a dimension equal to that of H

Z6
. The solution is

also stable, proper, and hence realizable.

2.4. OPTIMUM SPATIAL COMPENSATION DESIGN

The design of the spatial compensation of the control system is optimized using
the techniques developed in reference [4]. This approach uses sequential quadratic
programming (SQP) to determine a set of transducer locations that minimize the
H

2
norm of H

Z6
. SQP is a non-linear programming method based upon the

iterative formulation and solution of quadratic subproblems and, as shown in
reference [4], is rapidly convergent. Its application to optimizing spatial compensa-
tion of active control applications has been recently veri"ed by De Fonseca et al. [5].

A di!erence between this work and that in reference [4] is that here distributed
piezo-electric transducers are utilized; reference [4] utilized point transducers. As
such, a design constraint relating to transducer overlap must be added to the
optimization process. Wang et al., [13] presented a transducer overlap constraint
based upon approximating the square/rectangular patches as circular areas. For
this work, a constraint based upon the in"nity-norm is developed. The advantage
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of this approach is that edge-to-edge patch placement is allowed and the number of
overlap constraint equations has been reduced from three to one.

Assuming that the origin is at the lower-left corner of the plate and normalized
dimensions, the in"nity-norm overlap constraint is written as

G
i,j
"!AKK

x
i
!x

j
lp
x

,
y
i
!y

j
lp
x
KK
=

!1B, (2)

where G
i,j

is the constraint between transducers i and j, iOj, (x
i
, y

i
) and (x

j
, y

j
)

are the non-dimensional center locations of each transducer and (lp
x
, lp

y
) are

characteristic dimensions of the square/rectangular transducers. In this
development, it is also assumed that the transducer patches are always oriented
square to the plate edges.

Another constraint is necessary to ensure that the patches are placed within the
plate boundaries. Again using the in"nity norm, the edge constraints are written as

G
i
"Ex

i
!1/2E

=
#lp

x
/2!1/2, (3a)

G
i
"Ey

i
!1/2E

=
#lp

y
/2!1/2, (3b)

where G
i
is the edge constraint for the ith transducer. The use of the in"nity-norm

approach reduces the number of edge-constraint evaluations by a factor of two
from traditional methods that evaluate each edge individually [13,4], e.g., equation
(3b) replaces x

j
!lp

x
/2(0 and x

j
#lp

x
/2!1(0.

3. PHYSICAL SYSTEM

The plate shown in Figure 1 is assumed to have simply supported boundary
conditions and be made of steel. The plate material properties are given in Table 1.
Each control transducer is assumed to be a square patch of distributed PZT
material; the transducer material properties are given in Table 2. The transducer
placement shown in Figure 1 has been arbitrarily selected. Throughout the rest of
this work, this is referred to as the non-optimal placement. The non-optimal
placement is also the initial placement for the optimum spatial compensator design
process. The non-optimal center locations of each transducer are given in the "rst
column of Table 3, and noted as X

0
. The center points are being reported in

non-dimensional terms, (x/ls
x
, y/ls

y
). The last two columns of Table 3 give the optimal

placement, X
opt

, for the two controller cases. These results are discussed in
section 4.

The following parameters are held constant for each of the design cases: the
number of structural modes in the plate model, N

m
"30; the number of structural

modes incorporated into the radiation "lters, N
f
"10; and the DLA algorithm

convergence parameter [8], e"1]10~2. A larger number of plate modes is
utilized to su$ciently converge the plate zeros over the selected bandwidth of
interest: 0}500 Hz. However, the number of modes used in forming the radiation
"lters need only be extended over the desired bandwidth. The 0}500 Hz frequency
band represents the design region in which plate acoustic energy is a maximum and
passive noise control techniques are least e!ective.



TABLE 1

Properties of plate test structure

Property Value

Material Cold-rolled steel
Width, ls

x
0)600 m

Height, ls
y

0)525 m
Thickness, ls

z
0)002 m

Density, o
s

7700 kg/m3
Young's modulus, E

s
19)5]1010 Pa

Poisson's ratio, l
s

0)2
Damping ratio, f 0)05

TABLE 2

Properties of distributed transducers

Property Value

Material G-1195 PZT
Width, lp

x
0)0508 m

Height, lp
y

0)0508 m
Thickness, lp

z
0)0002 m

Density, o
p

7650 kg/m3
Young's modulus, E

p
4)9]1010 Pa

Poisson's ratio, l
p

0)3
Strain coe$cients, d

31
!66]10~12 m/V

TABLE 3

Placement of distributed transducer centers

Location (m/m)
Patch Non-optimal X

O
Static, Optimal X

opt
H

2
Optimal X

opt

p
1

(0)50, 0)32) (0)63, 0)57) (0)64, 0)23)
p
2

(0)45, 0)15) (0)51, 0)35) (0)44, 0)25)
p
3

(0)28, 0)57) (0)37, 0)60) (0)43, 0)73)
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4. RESULTS AND DISCUSSION

The performance results of four temporal and spatial compensation design cases
are compared in this work: two cases with a static controller and two cases with
a dynamic controller. For each controller, one case is with the non-optimal
transducer placement and one case is with optimal transducer placement. The
non-optimal transducer placement is chosen as the same for both controllers.



Figure 3. Acoustic power spectrum and AIL for all control system design cases (modal indices,
(i
x
, j

y
), are shown in parenthesis and 1/3-Octave band center frequencies are shown in italics): *,

open-loop; } ) ) } , closed-loop, static, non-optimal location; ) ) ) ) , closed-loop, static optimal
location, equal control energy;** , closed-loop, H2, non-optimal location, equal control energy;
} } } } , closed-loop, H2, optimal location,equal control energy.
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However, results show that the optimal transducer placement varies for static and
dynamic controllers.

The acoustic performance results for all design cases are plotted in Figure 3. Each
curve represents the acoustic power radiated per unit of input disturbance, over the
frequency band of interest. The top, solid line is the open-loop response of the
system, where the control transducers are attached (non-optimal placement), but
not activated. The sharp peaks in the plate acoustic response correspond to the
structural modal resonances; the modal indices, (i

x
, j

y
), of each peak are shown in

parenthesis in Figure 3. The four lower curves show the acoustic performance when
each control system has been activated. The active insertion loss (AIL) in 1/3-octave
bands of each design case is also given in Figure 3. The AIL ordinate is shown on
the right of the "gure and the 1/3-octave band center frequencies are shown in
italics. A detailed discussion of the performance results for each design case is given
below.
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4.1 STATIC, OUTPUT FEEDBACK CONTROL

The "rst two design cases considered are when G is a 3]3 static matrix. Static
controllers are desirable for adaptive structures due to their simplicity and ease of
implementation. However, as shown below, static controllers have performance
limitations.

The closed-loop response of the static controller with non-optimal transducer
placement case is shown as the dashed-dot-dot line in Figure 3. Small reductions in
the response of the strong acoustic radiator modes are shown with this control
system. The AIL results detail a 2)7 dB reduction in the 1/3-octave band centered at
31)5 Hz. The 31)5 Hz 1/3-octave band includes the fundamental (1,1) plate mode,
which is at 29)8 Hz. The static, non-optimal placement case also provides control of
the next two strong acoustic radiators: the (3,1) mode at 133)4 Hz and the (1,3)
mode at 165)0 Hz. The AIL results show 1)2 dB of reduction in the 1/3-octave band
at 125 Hz and 0)6 dB in the 1/3-octave band at 160 Hz. These performance results,
along with those for the other three design cases, are summarized in Table 4, where
it is also shown that the static, non-optimal placement design case provides 1)6 dB
of reduction over the entire frequency band of interest.

The eigenvalues of the static controller with non-optimal transducer placement
are all positive and real. Thus, this design of a colocated, strain-rate feedback
system is dissipative, with the associated guarantee of stability and excellent
robustness to model uncertainty [7,8].

The static, non-optimal placement case also sets the baseline of control energy
for this work; the parameter R for the other three cases is adjusted such that they
utilize the same amount of control energy as this case. Table 5 gives the control
energy results for the four design cases. The "rst column shows that with
R"6)929]10~15 the static controller with non-optimal transducer placement has
a control signal energy level of 459)832</N. As discussed in reference [6], this
signal level is reasonable for practical control system implementation. The
weightings and resulting signal levels for the other design cases are also given in
Table 5. For each case, the value of R was adjusted to normalize the control signal
energy to within $0)001</N of 59)832</N. The proper values of R were realized
by employing a linear, numerical line search routine.
TABLE 4

AI¸ of control system designs in selected 1/3-octave bands and over
the entire 0}500 Hz bandwidth

AIL (dB)

1/3-octave (Hz) Static, X
O

Static, X
opt

H
2
, X

O
H

2
, X

opt

31)5 2)7 4)3 6)4 8)4
125 1)2 5)4 2)3 4)4
160 0)6 4)5 1)6 3)1

Overall 1)6 2)4 2)8 3)4



TABLE 5

Control e+ort weighting and resulting control power for each
control system design

Static, X
O

Static, X
opt

H
2
, X

O
H

2
, X

opt

R 6)929]10~15 8)3473]10~15 4)5400]10~18 4)7707]10~8
EH

c
E
2

(</N) 459)832 459)833 459)833 459)833
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As discussed in reference [6], static controllers do not o!er the ability to
frequency-shape the sensor response. Therefore, it is expected that optimizing the
spatial compensation design of an adaptive structure with a static controller will
o!er a signi"cant performance increase. Starting with the non-optimal transducer
placement, the techniques presented in section 2.3. are applied to the static
controller case. The optimal transducer placement was determined in 87 design
iterations and is given in the second column of Table 3.

The acoustic performance results of the static controller with optimal transducer
placement and normalized control energy, are given in Figure 3 and Table 4. As
expected, optimizing transducer placement has signi"cantly increased the
performance of the static control system. The 1/3-octave band response at 31)5 Hz,
has reduced 4)3 dB from the open-loop response and 1)6 dB from the non-optimal
case. Even greater increases are shown in controlling the responses of the higher
radiating modes. For the 1/3-octave band at 125 Hz, the acoustic response has
reduced 5)4 dB from the open-loop case and 4)2 dB from the non-optimal
placement case. Overall, the static controller with optimal transducer placement
provides 2)4 dB of reduction integrated over the bandwidth } a 0)8 dB
improvement from the non-optimal case. The eigenvalues of the static controller for
the optimal transducer locations are also all positive and real; this design yields
a positive-real, dissipative controller.

4.2. H
2

CONTROL

The H
2

control design is implemented to investigate the performance increase
gained from a dynamic controller. In this formulation, the controller involves a full
system model with 248 states.

To ensure robustness of the H
2

controller, random measurement noise is assumed
on all three sensors during controller design. Each noise signal is an uncorrelated
zero-mean Gaussian stochastic process with a constant power spectral density of
S
vv
(u)"7)0]10~5. This value corresponds to a noise level that is approximately

10% of the sensor signal levels, during operation in their non-optimal positions.
The H

2
control is "rst evaluated with non-optimal transducer placement. The

results for this case are shown as the solid gray line in Figure 3 and summarized in
Table 4. The H

2
controller with non-optimal transducer placement shows

signi"cantly greater control of the plate response than the static controller with
non-optimal placement, even with normalized control energy. In each of
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the 1/3-octave bands of interest, the performance of the H
2

controller with
non-optimal placement is greater than twice that of the static controller with the
same transducer placement.

Comparison of the results for the H
2

controller with non-optimal transducer
placement and the results for the static controller with optimal transducer
placement show similar performance improvements, owing to the operation of the
induced strain transducers. Over the frequency band of interest, the static controller
with optimal transducer placement provides 2)4 dB of reduction; whereas, the H

2
controller with non-optimal transducer placement provides 2)8 dB of reduction.
Control of the fundamental mode is signi"cantly greater using the H

2
controller

with non-optimal transducer positions. However, the static controller with optimal
transducer positions provides greater control of the higher acoustic radiators.

Using the spatial optimization routine, the transducer placement of the H
2

controller is optimized. The optimal placement for the H
2

controller was deter-
mined in 124 design iterations and is given in the last column of Table 3. The
optimal placement for the H

2
controller is di!erent from the optimal placement for

the static controller case. Results in Figure 3 show that control of the fundamental
plate mode is greatest with the H

2
controller with optimal transducer placement.

However, the higher frequency performance of both the non-optimal and optimal
dynamic controller is not as great as the static controller case with optimal
placement. This is most likely a result of the dynamic controller giving greater
emphasis to the lower frequency range and the fact that the static controller uses
induced strain transducers which couple more e$ciently to high frequency modes.
Whereas, for the dynamic controller the sensor noise limits the high frequency
response. Overall reduction of structural acoustic response is signi"cantly greater
for the H

2
controller with optimal placement case than all the other cases.

An important comparison is to consider the performance increase from spatial
compensation optimization for both the static and dynamic controller cases.
Comparison of the 1/3-octave bands of interest in Table 4 shows that a much
greater relative increase in performance is obtained for static controllers. Since
static controllers have a "xed frequency response, frequency-shaping of the control
system is achieved exclusively by varying the spatial compensation. Dynamic
controllers o!er the ability to frequency shape the control system response, without
the need to signi"cantly vary the spatial compensator. Thus, performance increases
from spatial placement optimization with a static controller are much more signi"cant.

Finally, Figure 3 shows that the H
2

controller in both transducer placement
cases increases the acoustic response of the plate above the frequency range of
interest. This behavior is commonly referred to as controller spillover. Controller
spillover is a signi"cant issue when evaluating a control system as it can lead to
system instabilities associated with unmodelled system dynamics. Such issues are
not investigated in this work, but must be considered for practical application.

5. CONCLUSIONS

A comparison of the performance of static and dynamic (H
2
) controllers with

both non-optimal (arbitrary) and optimal transducer placement was conducted. All
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design cases were normalized such that each controller utilized the same amount of
control signal energy. The results demonstrate that:

(1) optimizing transducer placement for a static controller provides a performance
increase comparable to replacing the static controller with a dynamic controller
under the constraint of equal control e!ort;

(2) determining the optimal transducer placement increases the performance of
both static and dynamic controllers, where the greatest relative increase is seen
with static controllers;

(3) a dynamic controller with optimal transducer placement provides the greatest
performance of all the design cases.

Optimizing transducer placement (spatial compensation) should be considered
an important aspect of designing an adaptive structure with a static controller, as
this process overcomes some of the performance limitations of static controllers.
However, if optimal performance is desired it is best to assume the design
complexity of both optimizing transducer placement and implementing a dynamic
controller.
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